ar X iv : 0 71 1 . 27 58 v 1 [ m at h . A G ] 1 7 N ov 2 00 7 Rational curves of degree 11 on a general quintic threefold ∗

نویسنده

  • Ethan Cotterill
چکیده

We prove the “strong form” of the Clemens conjecture in degree 11. Namely, on a general quintic threefold F in P, there are only finitely many smooth rational curves of degree 11, and each curve C is embedded in F with normal bundle O(−1) ⊕ O(−1). Moreover, in degree 11, there are no singular, reduced, and irreducible rational curves, nor any reduced, reducible, and connected curves with rational components on F .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 02 07 25 7 v 1 [ m at h . A G ] 2 7 Ju l 2 00 2 RATIONAL CURVES ON HYPERSURFACES OF LOW DEGREE , II

This is a continuation of [7] in which we proved irreducibility of spaces of rational curves on a general hypersurface X d ⊂ P n of degree d < n+1 2. In this paper, we prove that if d 2 + d + 2 ≤ n and if d ≥ 3, then the spaces of rational curves are themselves rationally connected.

متن کامل

ar X iv : 0 71 1 . 26 95 v 1 [ m at h . SP ] 1 6 N ov 2 00 7 REGULARITY AND THE CESÀRO – NEVAI CLASS

We consider OPRL and OPUC with measures regular in the sense of Ullman–Stahl–Totik and prove consequences on the Jacobi parameters or Verblunsky coefficients. For example, regularity on [−2, 2] implies lim N →∞ N −1 [ N n=1 (a n −1) 2 +b 2 n ] = 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007