ar X iv : 0 71 1 . 27 58 v 1 [ m at h . A G ] 1 7 N ov 2 00 7 Rational curves of degree 11 on a general quintic threefold ∗
نویسنده
چکیده
We prove the “strong form” of the Clemens conjecture in degree 11. Namely, on a general quintic threefold F in P, there are only finitely many smooth rational curves of degree 11, and each curve C is embedded in F with normal bundle O(−1) ⊕ O(−1). Moreover, in degree 11, there are no singular, reduced, and irreducible rational curves, nor any reduced, reducible, and connected curves with rational components on F .
منابع مشابه
ar X iv : m at h / 02 07 25 7 v 1 [ m at h . A G ] 2 7 Ju l 2 00 2 RATIONAL CURVES ON HYPERSURFACES OF LOW DEGREE , II
This is a continuation of [7] in which we proved irreducibility of spaces of rational curves on a general hypersurface X d ⊂ P n of degree d < n+1 2. In this paper, we prove that if d 2 + d + 2 ≤ n and if d ≥ 3, then the spaces of rational curves are themselves rationally connected.
متن کاملar X iv : 0 71 1 . 23 72 v 1 [ m at h . G R ] 1 5 N ov 2 00 7 Braid groups and Artin groups
متن کامل
ar X iv : h ep - p h / 00 11 11 7 v 1 8 N ov 2 00 0 1 ( Mis ) Understanding the Atmospheric Neutrino Anomaly
متن کامل
ar X iv : m at h / 04 10 61 1 v 2 [ m at h . A G ] 1 1 N ov 2 00 4 ON RATIONAL CUSPIDAL PROJECTIVE PLANE CURVES
متن کامل
ar X iv : 0 71 1 . 26 95 v 1 [ m at h . SP ] 1 6 N ov 2 00 7 REGULARITY AND THE CESÀRO – NEVAI CLASS
We consider OPRL and OPUC with measures regular in the sense of Ullman–Stahl–Totik and prove consequences on the Jacobi parameters or Verblunsky coefficients. For example, regularity on [−2, 2] implies lim N →∞ N −1 [ N n=1 (a n −1) 2 +b 2 n ] = 0.
متن کامل